

Orchardgrass Breeding and Genetics

Forage and Range Research Laboratory

Joseph G. Robins B. Shaun Bushman Kevin B. Jensen

Orchardgrass

PLANTS FOR THE WEST

Grazing

Mechanical harvest

Seed production

FRRL orchardgrass improvement – molecular and traditional approaches

EST-SSR markers (Bushman et al., 2011, TAG)

Genetic diversity (Bushman et al., 2011, TAG)

Linkage map & QTL (Xie et al., 2012, Genome)

Germplasm Evaluation / Population Improvement

Tetraploid and diploid accessions (Bushman et al., 2012, Crop Science)

Morphology and maturity (Robins et al., 2012a, Crop Science)

Combining ability of dry matter yield (Robins et al., 2012b, Euphytica)

Nutritive value, water-soluble carbohydrates, and performance in legume mixtures

Dactylis genetic diversity

Germplasm evaluation

Incorporate new germplasm

Phenotypic evaluation of germplasm

Diploid and tetraploid accessions Breeding populations Cultivars

Phenotypes

Heading date / morphology Forage yield Winter survival / freezing tolerance

Evaluation and selection locations

Rexburg, ID (BYU-ID Hillview Farm) 43.63° N, 111.67° W 1481 mas 356 mm annual precipitation silt loam soil

Millville, UT (USU Evans Farm) 41.68° N, 111.83° W 1378 mas 432 mm annual precipitation silty clay loam soil

Panguitch, UT (USU Panguitch Farm) 37.87° N, 112.44° W 1993 mas 247 mm annual precipitation loam soil

Heading date

Heading Date QTL Results

PLANTS FOR THE WEST

Heading date

162 HSFs evaluated for morphology and heading date

 H^2 (heading date) = 0.74

 H^2 (morphology) = 0.26 - 0.64

Significant differences among HSFs and cultivars

Early genotypes \rightarrow tall with short and narrow flag leaves

Late genotypes \rightarrow short with long, wide flag leaves

UTDG101 extremely late

Heading date association

- Candidate gene approach to identify genetic determinants
 - Field data from 2010 and 2011 192 genotypes

Intent to map 15 candidate genes

(FT, HD, VRN, CONSTANS)

Association with candidate genes

Forage yield – combining ability

Population hybrids among 9 population sources

GCA/SCA at harvests 1 and 3 and total

3 to 4 heterotic groups

Population hybrids with higher dry matter yield than cultivars

UTDG102 possessed high GCA

UTDG101 possessed high SCA, but low GCA

Forage yield - germplasm

HSFs

Low to moderate H²

0.50 for yearly total across locations

HSFs with higher dry matter yield than cultivars

Accessions

Subsp. *woronowii* possessed high DMY, late heading, and limited mortality

Winter survival

Fall 2010

Candidate gene approach to identify genetic determinants

Freezing tolerance in freezing chamber at several temperatures

Association of candidate genes

Choke resistance

Willamette Valley orchardgrass seed growers

Water-soluble carbohydrates

Abiotic stress resistance and improved nutritive value

Seed production

Increase seed production – late heading

Based on initial genotyping and phenotyping a number of promising germplasm sources were identified

Strategic use of markers to aid in selection process

Developed several breeding populations that are now being evaluated and selected

Working to develop improved populations that can be released with increased abiotic stress tolerance and agronomic performance

